> ADVANCED MCP PRESENTATION
SLIDE 15/16

> RECAP & KEY TAKEAWAYS [SYNTHESIS]

▶ THE FOUR PILLARS OF ADVANCED MCP

🔧 TOOLS

The heart of MCP servers

  • Async streaming with longRunningOperation
  • Structured metadata with annotatedMessage
  • Fine-grained, focused functionality
  • Intelligent LLM selection through rich schemas

📚 RESOURCES

Dynamic read-only context

  • Auto-updating data feeds (test://static/resource/42)
  • Subscription-based real-time updates
  • Large dataset handling via URI references
  • Efficient memory and bandwidth usage

💬 PROMPTS

Reusable conversation templates

  • Dynamic argument injection (resource_prompt)
  • Separation of prompt logic from content
  • Template reusability across contexts
  • External storage and version control

🤖 SAMPLING

Server-asks-model patterns

  • Bidirectional AI workflows (sampleLLM)
  • AI-assisted tool operations
  • Always validate AI output before trusting
  • Enable complex autonomous workflows

▶ ARCHITECTURAL PRINCIPLES

Everything Server = gold-standard reference implementation for all MCP patterns
┌──────────────────────────────────────────────────────────────────┐ │ MCP ARCHITECTURE PYRAMID │ ├──────────────────────────────────────────────────────────────────┤ │ │ │ 🚀 PRODUCTION │ │ Security + Performance │ │ ┌─────────────────────────┐ │ │ │ Secure by Design │ │ │ │ • OAuth2 + Validation │ │ │ │ • Audit + Monitoring │ │ │ │ • Container + Limits │ │ │ └─────────────────────────┘ │ │ │ │ │ 🔧 COMPOSITION │ │ Multi-Server Architecture │ │ ┌─────────────────────────────────┐ │ │ │ Specialized Servers │ │ │ │ Git + FS + DB + Everything │ │ │ │ • Focused domains │ │ │ │ • Client orchestration │ │ │ │ • Unique namespaces │ │ │ └─────────────────────────────────┘ │ │ │ │ │ ⚡ CORE PRIMITIVES │ │ Tools + Resources + Prompts + Sampling │ │ ┌─────────────────────────────────────────────────┐ │ │ │ Four Pillars │ │ │ │ • Async operations + Real-time data │ │ │ │ • Template systems + AI workflows │ │ │ │ • Structured metadata + Validation │ │ │ └─────────────────────────────────────────────────┘ │ │ │ └──────────────────────────────────────────────────────────────────┘

▶ PRODUCTION READINESS CHECKLIST

✅ MODULAR & TESTABLE

Build focused, single-purpose servers

✅ OBSERVABLE

Comprehensive logging, metrics, and tracing

✅ SECURE BY DESIGN

Authentication, validation, audit trails, sandboxing

✅ SCALABLE ARCHITECTURE

Async I/O, containerization, horizontal scaling

▶ FUTURE INNOVATION OPPORTUNITIES

🤖 AI-NATIVE PATTERNS

  • Self-configuring servers based on usage patterns
  • Predictive resource loading and caching
  • Adaptive tool selection and optimization
  • Autonomous workflow generation and tuning

🔗 ECOSYSTEM EXPANSION

  • Industry-specific server libraries (finance, healthcare, etc.)
  • Community-driven tool marketplaces
  • Cross-platform compatibility layers
  • Integration with emerging AI frameworks

📊 INTELLIGENCE LAYERS

  • Advanced analytics on tool usage patterns
  • Performance optimization recommendations
  • Security threat detection and mitigation
  • Business intelligence integration

▶ DEVELOPER PRODUCTIVITY GAINS

├── Faster Development │ Reusable components, clear patterns ├── Better Debugging │ Inspector tools, structured logging ├── Improved Security │ Built-in best practices, validation ├── Easier Scaling │ Container-ready, cloud-native design └── Enhanced Collaboration │ Standardized interfaces, documentation

▶ BUILD MODULAR, TESTABLE, OBSERVABLE COMPONENTS

Remember: MCP servers provide tools, resources, prompts, and sampling as composable building blocks for AI-powered applications

Success Metrics:

  • Developer Velocity: How quickly can teams build and deploy new AI capabilities?
  • System Reliability: What's the uptime and error rate of production servers?
  • Security Posture: How well are systems protected against threats?
  • Business Value: What measurable improvements do AI workflows provide?