> ADVANCED MCP PRESENTATION
SLIDE 14/16

> ADVANCED WORKFLOW EXAMPLES [END-TO-END]

▶ COMPLETE AI WORKFLOW PATTERNS

Claude: resource → prompt → sampling → action - combining all four MCP primitives
┌──────────────────────────────────────────────────────────────────┐ │ COMPLETE WORKFLOW CHAIN │ ├──────────────────────────────────────────────────────────────────┤ │ │ │ 1. RESOURCE 2. PROMPT 3. SAMPLING 4. ACTION │ │ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ ┌───────────┐ │ │ │ Load data │─►│ Template │─►│ AI analysis │►│ Execute │ │ │ │ from URI │ │ with args │ │ & decision │ │ tool call │ │ │ └─────────────┘ └─────────────┘ └─────────────┘ └───────────┘ │ │ │ │ Claude orchestrates the entire chain intelligently │ └──────────────────────────────────────────────────────────────────┘

🎮 LIVE DEMO WORKFLOWS

📊 WORKFLOW 1: AI DATA ANALYSIS

DEMONSTRATION: Use sampleLLM to write markdown summary from resource
$ mcp-inspector > Multi-step workflow demonstration STEP 1: Load Resource > Browse to test://static/resource/42 > Data: {"metrics": [...], "timestamp": "2025-11-19T10:45:00Z"} STEP 2: Apply Prompt Template > Select resource_prompt template > Set resource_uri: "test://static/resource/42" > Generate analysis prompt STEP 3: AI Sampling > Call sampleLLM with generated prompt > AI analyzes resource data > Produces structured markdown summary STEP 4: Action (Optional) > Save summary as new resource > Trigger notification workflow > Update dashboard display [RESULT] Complete AI-driven data analysis pipeline

🎨 WORKFLOW 2: MULTI-MODAL CREATION

DEMONSTRATION: Combine complex_prompt + getTinyImage to mix modalities
STEP 1: Complex Prompt Generation > Execute complex_prompt with creative parameters > Generate detailed image description STEP 2: Image Generation > Call getTinyImage with AI-generated description > Create visual content based on prompt STEP 3: Multi-Modal Output > Combine text analysis + generated image > Create rich content presentation [RESULT] AI-generated content with both text and visuals

▶ PRODUCTION WORKFLOW PATTERNS

🔄 AUTOMATED CODE REVIEW

```python # Multi-server workflow example async def automated_code_review_workflow(): # 1. Resource: Get changed files from Git changed_files = await git_server.call_tool("git_diff", {"format": "unified"}) # 2. Prompt: Apply code review template review_prompt = await prompt_server.get_prompt( "code_review_template", {"diff_content": changed_files, "language": "python"} ) # 3. Sampling: AI analyzes code quality ai_review = await sampling_server.call_tool( "sampleLLM", {"prompt": review_prompt} ) # 4. Action: Post review comments await git_server.call_tool( "post_review_comment", {"content": ai_review, "pr_id": pr_id} ) ```

📈 REAL-TIME MONITORING PIPELINE

```yaml workflow_name: "performance_monitoring" triggers: - schedule: "*/5 minutes" - webhook: "/alerts/performance" steps: 1. resource_collection: - server: monitoring_server - tool: collect_metrics - output: metrics_resource_uri 2. analysis_prompt: - server: prompt_server - template: performance_analysis - args: {resource_uri: "${step1.metrics_resource_uri}"} 3. ai_assessment: - server: ai_server - tool: sampleLLM - input: "${step2.rendered_prompt}" 4. alert_action: - server: notification_server - tool: send_alert - condition: "${step3.severity} > 'warning'" ```

🎮 LIVE DEMO: SUBSCRIPTION WORKFLOWS

DEMONSTRATION: Subscribed resource auto-refresh visible in Inspector
$ mcp-inspector > Navigate to Resources tab > Subscribe to test://static/resource/42 > Watch real-time updates trigger workflow chains [T+00s] Resource updated → Trigger analysis workflow [T+00s] AI processes new data → Generate insights [T+01s] Workflow completes → Update dashboard [T+05s] Resource updated → Repeat cycle [AUTOMATION] Fully automated reactive workflows [EFFICIENCY] Only processes when data changes [SCALABILITY] Multiple subscribers, single source

Subscription Benefits:

  • Event-Driven: Only executes when data changes
  • Resource Efficient: No polling overhead
  • Real-Time Response: Immediate workflow triggers
  • Parallel Processing: Multiple workflows can subscribe

▶ ENTERPRISE INTEGRATION PATTERNS

🔗 API GATEWAY INTEGRATION

MCP servers behind enterprise API management

📊 WORKFLOW ORCHESTRATION

Integration with tools like Airflow, Temporal

🔐 IDENTITY FEDERATION

SSO integration with corporate identity providers

📈 BUSINESS INTELLIGENCE

AI workflows feeding into BI dashboards

▶ OBSERVABILITY IN WORKFLOWS

├── Distributed Tracing │ Follow requests across multiple servers ├── Workflow Metrics │ Success rates, execution times, bottlenecks ├── Business Metrics │ ROI, productivity gains, quality improvements ├── Error Analysis │ Failure modes, recovery patterns, prevention └── Performance Tuning │ Optimization opportunities, resource usage