▶ PRODUCTION DEPLOYMENT ARCHITECTURE
Async I/O, graceful shutdowns, containerization with resource limits
┌──────────────────────────────────────────────────────────────────┐
│ PRODUCTION DEPLOYMENT STACK │
├──────────────────────────────────────────────────────────────────┤
│ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ LOAD │────►│ MCP SERVER │────►│ RESOURCES │ │
│ │ BALANCER │ │ CONTAINER │ │ (DB/FILES) │ │
│ │ (nginx) │ │ (Docker) │ │ │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │ │ │ │
│ ▼ ▼ ▼ │
│ ┌─────────────┐ ┌─────────────┐ ┌─────────────┐ │
│ │ TLS TERM │ │ RESOURCE │ │ MONITORING │ │
│ │ + AUTH │ │ LIMITS │ │ & LOGGING │ │
│ └─────────────┘ └─────────────┘ └─────────────┘ │
│ │
│ Horizontal scaling with multiple container instances │
└──────────────────────────────────────────────────────────────────┘
▶ ASYNC I/O AND CONCURRENCY
import asyncio
from typing import AsyncGenerator
@server.tool()
async def process_large_dataset(data_source: str) -> AsyncGenerator[str, None]:
"""Process large dataset with streaming results."""
# Async file processing
async with aiofiles.open(data_source, 'r') as file:
async for chunk in file:
# Non-blocking processing
result = await process_chunk_async(chunk)
# Stream results back
yield f"Processed: {result}"
# Yield control to event loop
await asyncio.sleep(0)
# Concurrent tool execution
async def handle_multiple_requests():
tasks = [
process_tool_a(),
process_tool_b(),
process_tool_c()
]
results = await asyncio.gather(*tasks, return_exceptions=True)
return results
▶ GRACEFUL SHUTDOWN PATTERNS
🛑 SIGNAL HANDLING
SIGTERM, SIGINT for clean shutdown
⏳ REQUEST COMPLETION
Wait for active requests to finish
🔄 RESOURCE CLEANUP
Close connections, flush buffers, save state
🎮 LIVE DEMO: RESOURCE SCOPING
DEMONSTRATION:
listRoots shows file scoping and safe enumeration
$ mcp-inspector
> Call listRoots tool
Response: {
"roots": [
{
"uri": "file:///workspace/mcp-demo",
"name": "MCP Demo Project",
"description": "Demo project files and resources"
},
{
"uri": "file:///shared/templates",
"name": "Shared Templates",
"description": "Read-only template library"
}
],
"access_policy": {
"read": ["*.md", "*.json", "*.yaml"],
"write": ["workspace/**/*"],
"exclude": [".env", "credentials.*", "*.key"]
}
}
[SECURITY] Only listed roots accessible
[PERFORMANCE] Efficient directory enumeration
[AUDIT] All access attempts logged
Performance Optimizations:
- Lazy Loading: Resources loaded on demand
- Caching Strategy: Frequently accessed data cached
- Batch Operations: Multiple file operations combined
- Index Optimization: Fast directory traversal
▶ CONTAINERIZED DEPLOYMENT
# Production-ready MCP server container
FROM python:3.11-slim
# Security: non-root user
RUN useradd -m -u 1000 mcpuser
# Performance: multi-stage build for smaller image
COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt
# Resource limits in docker-compose
services:
mcp-server:
build: .
user: "1000:1000"
deploy:
resources:
limits:
cpus: '2.0'
memory: 1G
reservations:
cpus: '0.5'
memory: 256M
healthcheck:
test: ["CMD", "curl", "-f", "http://localhost:8000/health"]
interval: 30s
timeout: 10s
retries: 3
▶ MONITORING & OBSERVABILITY
📊 METRICS COLLECTION
Response times, throughput, error rates, resource usage
🔍 DISTRIBUTED TRACING
Request flows across multiple servers
📈 PERFORMANCE DASHBOARDS
Real-time operational insights
🚨 ALERTING
Automated notifications for anomalies
▶ HORIZONTAL SCALING STRATEGIES
# Kubernetes deployment example
apiVersion: apps/v1
kind: Deployment
metadata:
name: mcp-server
spec:
replicas: 3
selector:
matchLabels:
app: mcp-server
template:
spec:
containers:
- name: mcp-server
image: mcp-server:latest
resources:
requests:
memory: "256Mi"
cpu: "250m"
limits:
memory: "512Mi"
cpu: "500m"
livenessProbe:
httpGet:
path: /health
port: 8000
readinessProbe:
httpGet:
path: /ready
port: 8000
Scaling Considerations:
- Stateless Design: Servers can be replicated easily
- Load Distribution: Round-robin or intelligent routing
- Health Checks: Automatic failover and recovery
- Rolling Updates: Zero-downtime deployments