> ADVANCED MCP PRESENTATION
SLIDE 08/16

> SAMPLING: SERVER-ASKS-MODEL [AI WORKFLOWS]

โ–ถ REVERSE AI PATTERN

Server sends prompt to model mid-tool execution for AI-driven workflows
async def sampleLLM(prompt: str) -> str: """Server requests completion from the connected model""" response = await server.request_completion( messages=[{"role": "user", "content": prompt}], max_tokens=1000 ) return response.content

โ–ถ USE CASE PATTERNS

๐Ÿค– SUMMARIZATION

Generate summaries during data processing

๐Ÿ”ง CODE GENERATION

AI-assisted tool operations

๐Ÿ‘ค USER EMULATION

Simulate user responses for testing

โ–ถ SAMPLING WORKFLOW ARCHITECTURE

โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ SAMPLING WORKFLOW โ”‚ โ”œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค โ”‚ โ”‚ โ”‚ 1. Tool Execution 2. Server Decision 3. Model Call โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ User calls โ”‚โ”€โ”€โ”€โ”€โ–บโ”‚ Server needsโ”‚โ”€โ”€โ”€โ”€โ”€โ–บโ”‚ Model โ”‚ โ”‚ โ”‚ โ”‚ sampleLLM โ”‚ โ”‚ AI assist โ”‚ โ”‚ generates โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ response โ”‚ โ”‚ โ”‚ โ–ฒ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ โ”‚ 4. Validation 5. Returnโ”‚ โ”‚ โ”‚ โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ–ผ โ”‚ โ”‚ โ”‚ Final โ”‚โ—„โ”€โ”€โ”€โ”€โ”ค Server โ”‚โ—„โ”€โ”€โ”€โ”€โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ”‚ โ”‚ Response โ”‚ โ”‚ validates โ”‚ โ”‚ AI Response โ”‚ โ”‚ โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ โ”‚ โ”‚ โ”‚ โ”‚ Critical: Always validate AI output before trusting actionsโ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜

๐ŸŽฎ LIVE DEMO: SAMPLELLM TOOL

DEMONSTRATION: sampleLLM tool in Everything Server triggers completions
$ mcp-inspector > Call sampleLLM tool > Prompt: "Summarize the key benefits of MCP in 3 bullet points" [TOOL] sampleLLM called with prompt [SERVER] Requesting completion from connected model... [MODEL] Processing prompt and generating response... Response: โ”Œโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ” โ”‚ โ€ข Modular Integration: MCP enables M+N โ”‚ โ”‚ connections instead of Mร—N complexity โ”‚ โ”‚ โ”‚ โ”‚ โ€ข Standardized Protocol: Unified interface โ”‚ โ”‚ for tools, resources, and prompts โ”‚ โ”‚ โ”‚ โ”‚ โ€ข AI-Native Design: Built specifically for โ”‚ โ”‚ LLM interaction patterns and workflows โ”‚ โ””โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”˜ [VALIDATION] Server validates response format and content [RETURN] Validated AI-generated summary returned to user

Key Observations:

  • Bidirectional AI - server can request model assistance
  • Validation layer - never trust AI output blindly
  • Workflow integration - AI becomes part of tool logic
  • Context preservation - model has access to conversation context

โ–ถ ADVANCED APPLICATIONS

โ”œโ”€โ”€ Data Analysis        โ”‚ AI-powered data insights and patterns
โ”œโ”€โ”€ Content Generation   โ”‚ Dynamic content creation workflows
โ”œโ”€โ”€ Decision Support     โ”‚ AI-assisted decision making
โ”œโ”€โ”€ Quality Assurance    โ”‚ Automated testing and validation
โ””โ”€โ”€ User Experience      โ”‚ Personalized responses and recommendations
        

โ–ถ SAFETY CONSIDERATIONS

โœ… ALWAYS VALIDATE

Never trust AI output for critical operations

๐Ÿ”’ SANDBOX EXECUTION

Isolate AI-generated code or commands

๐Ÿ“Š AUDIT TRAILS

Log all AI interactions for debugging