โถ REVERSE AI PATTERN
Server sends prompt to model mid-tool execution for AI-driven workflows
async def sampleLLM(prompt: str) -> str:
"""Server requests completion from the connected model"""
response = await server.request_completion(
messages=[{"role": "user", "content": prompt}],
max_tokens=1000
)
return response.content
โถ USE CASE PATTERNS
๐ค SUMMARIZATION
Generate summaries during data processing
๐ง CODE GENERATION
AI-assisted tool operations
๐ค USER EMULATION
Simulate user responses for testing
โถ SAMPLING WORKFLOW ARCHITECTURE
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ SAMPLING WORKFLOW โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค
โ โ
โ 1. Tool Execution 2. Server Decision 3. Model Call โ
โ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โ
โ โ User calls โโโโโโบโ Server needsโโโโโโโบโ Model โ โ
โ โ sampleLLM โ โ AI assist โ โ generates โ โ
โ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โ response โ โ
โ โฒ โโโโโโโโโโโโโโโ โ
โ โ โ โ
โ โ 4. Validation 5. Returnโ โ
โ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โผ โ
โ โ Final โโโโโโโค Server โโโโโโโโโโโโโโโโโโโโโ โ
โ โ Response โ โ validates โ โ AI Response โ โ
โ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโ โ
โ โ
โ Critical: Always validate AI output before trusting actionsโ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
๐ฎ LIVE DEMO: SAMPLELLM TOOL
DEMONSTRATION:
sampleLLM tool in Everything Server triggers completions
$ mcp-inspector
> Call sampleLLM tool
> Prompt: "Summarize the key benefits of MCP in 3 bullet points"
[TOOL] sampleLLM called with prompt
[SERVER] Requesting completion from connected model...
[MODEL] Processing prompt and generating response...
Response:
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
โ โข Modular Integration: MCP enables M+N โ
โ connections instead of MรN complexity โ
โ โ
โ โข Standardized Protocol: Unified interface โ
โ for tools, resources, and prompts โ
โ โ
โ โข AI-Native Design: Built specifically for โ
โ LLM interaction patterns and workflows โ
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
[VALIDATION] Server validates response format and content
[RETURN] Validated AI-generated summary returned to user
Key Observations:
- Bidirectional AI - server can request model assistance
- Validation layer - never trust AI output blindly
- Workflow integration - AI becomes part of tool logic
- Context preservation - model has access to conversation context
โถ ADVANCED APPLICATIONS
โโโ Data Analysis โ AI-powered data insights and patterns
โโโ Content Generation โ Dynamic content creation workflows
โโโ Decision Support โ AI-assisted decision making
โโโ Quality Assurance โ Automated testing and validation
โโโ User Experience โ Personalized responses and recommendations
โถ SAFETY CONSIDERATIONS
โ ALWAYS VALIDATE
Never trust AI output for critical operations
๐ SANDBOX EXECUTION
Isolate AI-generated code or commands
๐ AUDIT TRAILS
Log all AI interactions for debugging